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We discuss application of the fractional dimensionality approach to a variety of low-dimensional systems. Further, we show 
that thermodynamical behavior of such systems is determined by density of single quasi-particle states, which in turn is 
characterized by the value of the effective spectral dimension. After presentation, which shows how the spectral dimension 
is associated with the energy spectrum, we derive formulas for some physical quantities of those systems being an 
analytical functions of the effective spectral dimension.  
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1.  Introduction 
 
In the last 15 years the explosion of studies in low-

dimensional materials has allowed physicists to discover 
new electronic phases of matter. The increasing interest to 
study such systems stems from possible application in the 
electronics. With the progress in nanotechnology it has 
been possible to produce a variety of low-dimensional 
systems such as quantum-wells /QW/, superlattices, 
quantum wires, quantum dots or fractals. The common 
feature of all these systems is the constrained motion of 
the electrons as the result of restricted dimensionality. 
These constraints induce complicated correlations in the 
motion of the electrons, and hence (although inter-electron 
interactions are rather weak) we can classify them as 
’Strongly Correlated Electron Systems’. 

Provided that heterocomponents of low-dimensional 
systems show nanoscale modulations, there arises another 
common feature, at ambient temperatures the mean 
thermal wavelength becomes comparable to the system 
size. As a result of the strong localization between 
interfaces/boundaries there arises confinement of mobile 
charge carriers, that can alter physical behavior of the 
initially free electron gas [1]. Therefore it is important to 
have thorough understanding of the different aspects of 
confinement in order to be able to design optimized 
spintronic devices. In this context it is important to find 
some universal relations between confined geometry of the 
many body system and the physical phenomena. 

The idea of universality stimulates studies of physical 
behavior in real structures by means of model systems. 
Within this approach only a few parameters are sufficient 
to determine the relevant statistical properties of a wide 
class of systems. Among the most relevant parameters that 
characterize both single particle and collective behavior of 
any physical system is the dimensionality. We will show 
below that thermodynamical behaviour of a low-
dimensional system is determined by its spectral (fracton) 

dimension. If we limit our considerations to the many 
body system of weakly interacting particles, then its 
spectral dimension is determined by low-energy 
excitations. That’s why knowledge of both filled and 
empty eigenstates in close vicinity of the Fermi level 
becomes crucial for the proper description of the system. 

The density of quantum-states in confined many body 
system is determined by the shape and height of the QW 
potential barriers. This fact causes that value the effective 
spectral dimension can differ from the topological 
(geometrical) dimension that characterizes particle (mass) 
distribution. In real systems the value of effective spectral 
dimension extracted from experimental data [2] often 
shows fractional values. Experiments confirm that 
fractional dimensionality /FD/ can arise in various laminar 
system involving different quasiparticles like: polarons, 
excitons, magnons, phonons and electrons (see [3]-[13] 
and references therein). The spectral fractality of physical 
system can be generated two-ways, it can arise due to the 
fractality of underlying medium (heriditiary fractality due 
geometrical structure) or due to the fractality of the 
physical process. The latter mechanism can arise in the 
vicinity of phase transition when accumulated fluctuations 
of the order parameter form fractal patterns. In quantum 
systems under some conditions, e.g. at the critical energy 
separating localized and extended states, the wave 
functions are shown to have fractal structure (see [14] and 
references therein). In the following we will use 
approximate analytical methods [15], [16] to discuss 
thermodynamical behaviour of confined many body 
system. Basing on examples of analytically solvable 
systems we show that the effective spectral dimension α of 
low-dimensional systems (i.e., of geometrical dimension 
D<3) can vary in the range 1<α<4. 
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2.  Fractional spectral dimension 
 

To any physical systems various definitions of 
dimension can be proposed. In description of collective 
behavior of many particle system we shall be interested in 
geometrical dimension, i.e., dimension of the Euclidean 
space embedding a particle and/or spectral (dynamical) 
dimension, which is related to the motion of particles 
within a solid. The spectral dimension α is defined via the 
density of the free electron/quasiparticle states [15]  
 

n(E)dE≈(E−Eo)α/2−1dE∝kα−1dk, (1) 

where the spectral dimension α can take any real (i.e. also 
fractional) value. In conventional system the spectral 
dimension is nothing but the dimension of the reciprocal 
lattice. One can easily check that Eq. (1) reproduces the 
well-known formulas for the free electron density in 1D, 
2D or 3D systems. 

In the case of non translation-invariant structures it 
can been proven that spectral dimension is the best 
generalization of the Euclidean dimension of the system 
when dealing with dynamical or thermodynamical 
properties [17]. To show that, let us consider how the 
dimensionality enters the thermodynamical quantities. For 
an ideal Fermi/Bose gas the grand potential reads  
 

lnΞ=± ∑
k∈αD

 ln(1±e−βεk),                 (2) 

where the superscript k labels different dynamical states of 
electrons confined within QW. If we replace the 
summation over quantum states by the integral the formula 
(2) can be written as  
 

lnΞ= ⌡⌠
0

∞
 n(ε)ln(1±e−βε)dε,              (3) 

From Eq. (3) one can easily see that all the 
information about the dimensionality of the actual system 
enters thermodynamical formulas via the density of states 
n(ε). Thus, in view of Eq (1) the thermodynamical 
evolution of any system depends on its spectral dimension. 
There is a widespread conjecture that dimensions of the 
position space (lattice), and of dynamical space (reciprocal 
lattice) should be both equal and integer. However, there is 
experimental evidence that in many laminar systems at 
least one of the abovementioned relations does not hold. In 
many low-dimensional systems like e.g. superlattices or 
overlayers, the vibrational as well the electron density of 
states, extracted from the experimental data correlates with 
those predicted for the systems of fractional dimension 
/FD/ [15, 16, 2]. Values of the effective spectral dimension 
α can be either higher (e.g. 0.86<α=4.7 in the irradiated 
GaN structures [18]) or lower (even negative [19]). 
Moreover in some laminar systems like Ag/Cu(001) 
overlayer or GaAs/AlxGa1−xAs quantum wells and 

superlattices as the layer thickness decreases (see [15] and 
references therein), show (sometime continuous) 

dimensional crossover from 3D to almost 2D behavior 
[16]. This effect can be easily understood, in any laminar 
structure the interlayer tunneling responsible for the 
charge transfer along the growth direction "z" is the result 
of thermal fluctuations and has 3D character [4] if  
 

kBT>t
2
z (T)/txy.                               (4) 

In Eq. (4) the tz and txy are the interlayer and in-layer 

hopping rates respectively, while kB is the Bolzmann 

constant. When the temperature is lowered to  
 

kBT≈t
2
z (T)/txy                                (5) 

 
the interlayer transfer is gradually limited and we have 
temperature driven dimensional 3D → 2D crossover. 
Thus, laminar systems offer good testing ground to study 
the general relations between dimension of a system and 
physical phenomena. 

It is evident from the above, that FD originates from 
restrained motion of mobile particles or quasi-particles in 
the stratified media. As it has been shown (see [15] and 
references therein) , the observed FD of a given physical 
system is based on physical strength rather than on the 
geometrical effects. This can be easily understood, 
numerous physical problems involve basic objects, which 
are usually described by shrinking or stretching the shape 
of some characteristic functions. This fact modifies the 
energy spectrum of the mobile quasi-particles, which in 
turn determines the spectral dimension [15]. Invoking a 
FD space in description of such a systems offers a 
convenient alternative to computational techniques. In this 
case single parameter - the spectral dimensionality- 
contains all of the information about the perturbation. We 
adopt the approach by He [15], who has shown that the 
anisotropic interactions in 3D space become isotropic ones 
in lower FD space, where the dimension is the Haussdorff 
dimension and is determined by the degree of anisotropy. 
This method allows also application of the k-space 
formalism. The method by He [15] postulates that the 
electron quantum states are homogenously distributed in 
the αD k-space and a surface of constant energy is an αD 
spherical shell. Suppose further that the energy dispersion 

is parabolic E−Eo≈k2 we obtain the expression for the 

density of states in αD k-space in the form of Eq. (1) (for 
details see [15]). This means although the ionic (mass) 
distribution within a position space of dimensionality β 
shows no peculiarities, the density of free particle 
eigenstates shows (sometimes fractional) power law 
scaling (with effective spectral dimension α≠β) [15]. 

It can be easily proven that definition (1) of the 
spectral dimension are nothing but the Hausdorff 
dimension of the effective k-space. Assuming that 
dynamical space fulfills the connectivity axiom [5], the 
Hausdorff dimension is equal to that obtained via box-
counting procedure. Thus, calculation of the Haussdorff 
dimension of the dynamical space requires determination 
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of the volume VE∝Eγ embedded by a surface of constant 

energy. It is well-known fact that density of the density of 
states n(E) is proportional to the measure of the surface of 
constant energy SE (i.e., n(E)∝SE). Moreover volume 

dVE∝Eγ−1dE of k-space contained between surfaces SE 

and SE+dE fulfills relation dVE∝SEdE, thus we can write  

 

dVE∝SEdE∝n(E)dE∝(E−Eo)α/2−1dE∝kα−1dk  (6) 

 
This means that α=γ and to determine the value of the 

spectral dimension it suffices to find the exponent that 
scales the density of states as an function of energy. The 
latter procedure can be performed provided that energy 
spectrum is known. This procedure has an advantage over 
other analytical procedures since scaling exponents in 
density of states (i.e. spectral dimension) can be also 
extracted form experimental data [2] . Let us now consider 
some model systems for which the value of the effective 
spectral dimension can be derived in an analytical way. 

 
 
3. Model systems 
 
The effective spectral dimensionality of laminar 

system can be easily determined provided that energy 
spectrum of mobile particles within the layer is known. As 
an example let us consider a semiconductor with planar 
doping, often used for forming V-shaped potential wells 
with quasi 2D electron gas. 

 
 

3.1 V-shaped δ-doped semiconductor 
 
When the deposition of impurities can be represented 

by the Dirac δ-function, it is called δ doping [13]. The 
enhanced mobility of the 2D electron gas in V-shaped, δ-
doped semiconductor multilayers can be described by the 
following Hamiltonian [13]  
 

H=−α1∇
4−α2∇

2+V,               (7) 

where  
 

α1= 
h4

4Eg
 
⎝⎜
⎛

⎠⎟
⎞ 

1

m*− 
1

mo

2
,             α2= 

h2

2m*,        (8) 

 

while mo and m* denote the bare and effective electron 

mass respectively, while Eg is the bottom of the valence 

band (for detailed description of the model see [13] and 
references therein). V=V(z) is the confinement potential 
that includes electron-electron interaction. At the same 
time V(z) is the conduction band edge profile. The 
eigenenergies of the electron/holes are given by [12]  
 

εk=α2k2−α1k4−μ,                 (9) 

 
where μ is the Fermi energy, k 

r
=(kx,ky). The εk represents 

the two-dimensional band of the 2D electron gas within 
the quantum wells of a laminar system. Having the mobile 
quasi-particle spectrum (9) known we can calculate the 
density of states as follows [13]  
 

n(k)dk≈π(ε−εo)−1/2dε.             (10) 

Expression (10) can be fitted to the general formula 
(1) by setting α=1. This means that we can model such a 
planar semiconductor with non-parabolic dispersion (3) by 
a 1D system with parabolic dispersion. In principle it is 
enough if the density of states fulfills relation (1) in a 
small energy window close to the Fermi energy. Extensive 
analytical discussion of how the effective spectral 
dimensionality is associated with the number of the free 
electron modes can be found in [3]. 

 
3.2  Parabolic quantum well 
 
Modern manipulation opportunities allow fabrication 

of semiconductor structures with highly controlled 
variable chemical composition and thickness of layers. 
Non-square quantum wells involving substantially non-
homogenous parts due to deliberate design, rather than 
having the conventional rectangular profiles, have been 
studied both experimentally and theoretically in the past 
few years and found to exhibit attractive performances 
(see [12] and references therein). The most promising 
appear the parabolic quantum well /PQW/ systems, which 
have the ability to absorb light only at the bare harmonic-
oscillator frequency irrespective of the electron-electron 
interaction or the number of electrons in the well. 
Assuming that the "z" denotes the direction of the planar 
PQW , the Hamiltonian which describes the electronic 
structure within the envelope function formalism and 
effective mass approximation, reads [12]  
 

H=− h
2

2m∇
2+ 

D
2z2+E0 .                     (11) 

 
Here, Eo and mn represent the band gap energy, and the 

effective mass at the center of the PQW, respectively. D is 
the curvature of the parabolic potential profile, which is 
assumed to be infinitely high. In view of the Hamiltonian 
(11) the electronic states within the PQW are the standard 
harmonic oscillator states and consequently the electron 
spectrum is given by [12]  
 

ε
n
k= 

h2k2

2m +hω(n+ 
1
2)−μ ,                  (12) 

 
where μ is the Fermi energy, ρ 

r
=(x,y) and k 

r
=(kx,ky). The 

ε
n
k represents the two-dimensional band of the quasi-2D 
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electron gas within the planar PQW. As we can see from 
Eq. (3) the finite thickness and broken translational 
symmetry of PQW structure leads to different quantization 
in the growth direction of the allowed electronic states. 
Assuming that all conduction electron states below the 

Fermi level εF=ε
nF
kF

 are occupied for both spin states, they 

fill a (rotational) paraboloide in the (kx,ky,n) space. The 

electronic density of states, taking into account the spin 
degeneracy, is given by [15]  
 

n(E) dE= 
2mπ

h2 ⋅(E−Eo) dE.                    (13) 

  
Expression (6) can be fitted to the general formula (1) 

by setting α =4. Conclusion, that the k-space of the 
electron gas confined within the PQW is four-dimensional 
appears to be counter-intuitive, however as we will show 
below there are other systems for which the spectral 
dimension exceeds 4. 

 
3.3  HTC copper oxides 
 
The conjecture that superconductivity comes about 

because of the fractal structure of underlying medium was 
raised firstly by Buettner and Blumen [7] in discussion of 
the high-temperature superconductivity (HTC). In the 
HTC copper oxides the onset of superconductivity is 
closely related to the oxygen deficiency. It was postulated 
that the oxygen vacancies located mainly within the CuO2 
planes of the YBCO system form a fractal structures. 
Since the fraction vibrational frequency cutoff wFD is 
much greater than the Debye frequency of crystalline 
systems there arose conjecture that conduction electron 
scattering off fractons can be responsible for the high 
critical temperature [11]. Suppose that HTC SC is in the 
normal phase, then the energy spectrum of the mobile, 
bipolaron local electron pairs /LEP’s/ is given by εk=γ|k| 

[20] where k 
r
∈(kx,ky) space. Thus the density of the LEP’s 

pairs is given by n(k)dk∝kdk or equivalently 
n(E)dE∝|E−Eo|dE. The latter formula means that the 

effective spectral dimension of the LEP’s system equals 4. 
Although all the discussed model systems are the quasi-2D 
(when geometrical meaning of dimensionality is used) 
their spectral dimension varies within 1<αD<4 range. 
Since collective behavior of the many body system is 
determined by density of states this means that these 
quasi-2D systems should behave in different manner. 
Below we will discuss some consequences of the variable 
spectral dimensionality of layered systems. 

 
 

4. Condensation of the local electron pairs in  
    the HTC superconductors 
 
The conventional theory of boson condensation 

derived for systems of integral dimensionality [8] can be 

easily extended onto systems, which exhibit fractional 
spectral dimension α. The total number of bosons NB(T) 

in the system consists of the NB,0(T)  ones that occupy 

the ground state εo,(εo=0 in the thermodynamic limit), 

while the others are distributed over higher energy levels. 
In view of this we have: [8]  
 

NB=NB,0(T)+ ∑
k≠0

  
1

eβ(εk−μB)−1
,             (14)  

 
where β=1/KBT and μB<0 is the chemical potential. In Eq. 

(14) we assume that summation goes over the k -states 
filling the fractional αD space. After some algebra we can 
find the condensate fraction NB,0(T)/NB,0(0)  as [4].  

 
NB,0(T)

NB,0(0)=1− 
Vα
NB

 
⎝⎜
⎛

⎠⎟
⎞ 

m*

2πβh2

α/2
ζ(α/2).     (15) 

 
The condensate fraction falls off when the 

temperature is increased and eventually at Tc the 

condensate vanishes i.e. NB,0(T)/NB,0(0)=0 . From this 

condition we can derive the formula for the critical 
temperature Tc as a function of the effective spectral 

dimension α.  
 

Tc,α= 
m*

2πkBh
2 
⎝
⎜
⎛

⎠
⎟
⎞

 
Vα
NB

 ζ(α/2)
2/α

.               (16) 

 
The fact that the phase transitions are governed by the 

value of spectral rather than spatial dimension has been 
established long time ago when studying fractal systems 
[9], [10]. However, in the case of bulk or laminar systems 
phase transitions still are improperly classified according 
to the value of their spatial (geometrical) dimension. 
Let us discuss some consequences of Eq. (16). In 
conventional theories the ratio Vα/NB is treated as the 

inverse boson pair concentration n−1
B . Such interpretation 

is justified provided that spectral dimension α and 
dimension of real space β (position space) are equal. 
However, in systems of FD such interpretation is not valid. 
Suppose, that in the system under consideration we have 
some characteristic length L, then the volume 

Vα≈Lα≈(kF)−α. Simultaneously the volume of the 

system, i.e. volume filled with quasi-particles (boson 

pairs) can be expressed as Vβ≈Lβ. In view of this, 
concentration nB being the real space quantity reads as 

nB=NB/Vβ. Distinction between this different notions of 

dimensionality is often missed, but as it will be shown 
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below crucial in proper description of dimensional effects 

in SC. Inserting relation Vα≈Lα into Eq. (15) we have:  
 

Tc,α= 
m∗L2

2πkBh
2 
⎝⎜
⎛

⎠⎟
⎞ 

ζ(α/2)
NB

2/α
.                (17) 

 
In many layered systems when external conditions 

(temperature, thickness or fields) change the FD system 
undergoes (sometimes continuous) dimensional crossover. 
Let us consider a FD system in two states, which exhibit 
spectral FD α and α' respectively. Moreover let us assume 
that number of preexisting boson pairs is constant during 
this dimensional crossover. In view of Eq. (17) the 
hypothetical critical temperatures in both states fulfill the 
relation.  
 

Tc,α'
Tc,α

= 
m
∗
α'

m
∗
α

  
ζ(α'/2)α'/2

ζ(α/2)α/2  N(2/α'−2/α)
B .      (18) 

 
Let us study the variation of the critical temperature 

Tc,α' , associated with the continuous dimensional 

crossover. We assume, that in Eq. (18) α=3, i.e. we take 
the 3D case as the reference system. From Eq. (18) results 
that the critical temperature is elevated when the spectral 
dimensionality increases. The ratio (18) can be by an order 
of 10 or even larger when the spectral dimension α' 
exceeds 3. This means that in this situation the 
condensation occurs just at the pair formation temperature. 

 
 

5.  Layered magnetic systems 
 
Another collective magnetic phenomenon governed 

by the low-energy excitations is the RKKY exchange 
interactions. Let us assume that some localized magnetic 
moments are immersed in a sea of electrons which exhibit 
fractional spectral dimensionality α. As the result of 
electron, spin dependent scattering there arises an 
oscillatory polarization of the free electron system being a 
source of the RKKY interaction. 

 
 
5.1  RKKY interaction in a system of fractional  
       dimension 
 
Within perturbative approach, the RKKY interaction 

between magnetic moments of the magnetic ions (μi and 

μj )located at a distance Rij can be written as [3]  

 

H(Rij)= 
1
2A2 χ(Rij) μ 

r
i μ 
r
j,               (19) 

 

where χ(rij) is the non-uniform static susceptibility and A 

is a constant. The explicit form of the χ(Rij) is given by 

[3]  
 

χ(R)=−T ∑
l

 G(iωl,R)2,                  (20) 

 
where ωl=πT(2l+1) are the Matsubara frequencies and the 

electronic Green’s function is  
 

G(iω,R 
r
)= ⌡⌠ dαk 

r
(2π)α⋅ 

eik 
r
⋅R 
r

iω−εk
. (21) 

 
As we can see the calculation of the RKKY exchange 
integrals reduces to integration over αD free electron 
eigenstates with density of states given by Eq. (7). 
Contour integration over ω in eq. (20), accounting for the 
discontinuity of G(iω,R) at ω=0, in the low temperature 
limit, leads to an expression for the RKKY exchange 
integral in an αD system (compare [3])  
 

χ(r)≈ 
χo

rα
 r2 [ ]Jα/2−1(x) Yα/2−1(x)+Jα/2(x) Yα/2(x) .(22) 

 
with Yν(x) being the Neumann function, x=kF r and α=1 is 

the effective spectral dimension of the system under 
consideration. 
The calculated static susceptibility that determines 
exchange integral J(r)=Jo⋅χ(r) of the RKKY interaction 

(22) in the PQW system, shows conventional, sign-
reversal oscillatory behavior with the period governed by 
the wave-vector 2kF. It is well known fact that the leading 

term of the RKKY exchange integrals decays with the 

interspin separation as r−D ( see [3] and references 
therein), where D is the dimension of the system. The 
result (22) indicates clearly, that the spatial variation of the 
envelope function of χ(r) is governed by the spectral 
dimension α. The relation α<β is the direct consequence 
of dispersion (3), which generates lower density of states 
n(ε) compared to that of conventional parabolic dispersion. 
The fact that in the case of our system α<β means that the 
RKKY exchange integrals fall off (with the interspin 
separation) in a different manner that one would expect for 
the quasi-2D systems. We should note here that one would 
expect that the formulae for the RKKY range function (22) 
refers also to the Friedel oscillations in low-dimensional 
systems. 
 

5.2  Thermodynamical behavior 
 
The contribution from magnonic excitations in 

laminar system (that can be described by fractional 
dimension) to the internal energy of the system that is 
given by [21] 
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U= ⌡⌠
0

∞
  

ε %

eε %/kT−1
dn(ε %)= ⌡⌠

0

∞
  

ε %α/2

eε %/kT−1
d(ε %)=b Tα/2+1.  (23) 

 
where ε %=ε−ε0. Result (23) predicts arbitrary fractional 

power law temperature dependence of the specific heat 

Cm∝Tα/2, while in case of bulk systems it should be 

Cm∝T3/2. It is worth to note that numerical simulations by 

Ilković and Tuleja [22] predict similar behavior of Cm in 

layered system with dimensionality α that varies, as the 
function of the QW thickness, within 2.2<α<3.0 range. 
Similarly, the Bloch exponent in the low temperature 
magnetization M(T) can be calculated giving us 

M(T)=M(0)(1−BTα/2). 
 
 

6.  Fractal systems 
 
Last years the fractal systems attracted much 

attention. The fractality of physical systems manifests 
itself many ways, it can arise from the geometrical 
structure of nanocomposites [23] or diffusion limited 
aggregates (hereditary fractality), domain patterns [24] or 
fractality of relaxation processes [25]. The essential 
property of fractal systems (and consequently of physical 
processes on them) is a hierarchical organization of its 
elements, described by discrete scaling laws, which makes 
the fractal, regardless of magnification or contraction 
scale, looks the same. This property of fractals is called 
self-similarity, self-affinity or self-replicability. The fractal 
structure characterizes the static properties of the system 
while the thermodynamical description the information 
about spectral dimension is necessary. Therefore we 
should recall dynamical properties and interactions on 
fractal systems. The fractality influences the dynamical 
behavior two-ways. The first dependence comes from 
fractal distribution of interacting species in the embedding 
Euclidean space (mass fractal), while the second stems 
from the boundary conditions set on fractal perimeters 
(fractal drums). Consequently, evolution of fractal systems 
a rule involves fractional dynamics of the system [26], 
which in turn involves fractional calculus as the main tool 
of the theoretical description. The elementary excitations 
are the solutions of fractional differential equation e.g. of 
the wave-like form [26], [27], [28].  
 

ξDβu− 
1

cα
 tD

αu=0                               (24) 

 

In Eq. (24) ξDβu and tD
α denote the operators of 

fractional order differentiation with respect to the space 
and time variables (the Remann-Louville, Riesz, Caputo 
etc. derivatives, depending on the type of physical process, 
for details see [29])) with respect to space or time 
variables. The fractional time derivative accounts for the 

random interactions with the surrounding, while fractional 
space derivatives describe the reduced dimensionality of 
the system. We should remind the reader here that 
parameters α and β model different features of the 
dynamical system. The order of fractional time derivative 
α describes the damping, while the value of β reflects the 
reduced dimensionality of the fractal set. The direct 
consequence of the unconventional dynamics of the 
system is that the value of the spectral dimension as the 
rule is a fraction. 

 
7. Summary 
 
We study the many body system, in which the mobile 

charge carriers are confined within quantum-wells. Since 
thermodynamical behavior of such systems is determined 
by the low-energy excitations of single quasiparticles to 
account the effects of quantum confinement it suffices to 
know the density, of states close to the Fermi level. In our 
study we limit ourselves to the case, when the density of 
single quasiparticle states is given by Eq. (1). The 
effective density of states shows simple scaling relation 
with an exponent (spectral dimension) α. We show that 
the effective spectral dimension of quasi-2D system can be 
a fraction from the 1<α<4 region, and can vary when 
external parameters like temperature or pressure are 
changed. When applied to real systems like magnetic 
superlattices or HTC copper oxides the effective 
dimensionality approach allows rigorous calculation of 
analytical expressions for some physical quantities. 
Among others we have derived formulae for the interlayer 
coupling in magnetic superlattice and critical temperature 
in LEP based superconductor as an analytical functions of 
spectral dimension. 

In conclusion we can state that presented approach 
offers convenient alternative to the numerical simulations 
and gives better insight into the physics of the low-
dimesional systems. From the discussion above it is 
evident that topological (geometrical) dimension 
characterizes static properties of a physical system while 
the spectral dimension describes its dynamical evolution. 
The fact that effective spectral dimension depends on the 
external fields indicates the way in which physical 
properties of quasi-2D systems can be manipulated form 
outside. It is evident that potential applications of the 
results obtained cover much wider variety of many body 
systems than those discussed above. 
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