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Thermodynamical behaviour of confined many-electron

systems
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We discuss application of the fractional dimensionality approach to a variety of low-dimensional systems. Further, we show
that thermodynamical behavior of such systems is determined by density of single quasi-particle states, which in turn is
characterized by the value of the effective spectral dimension. After presentation, which shows how the spectral dimension
is associated with the energy spectrum, we derive formulas for some physical quantities of those systems being an

analytical functions of the effective spectral dimension.
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1. Introduction

In the last 15 years the explosion of studies in low-
dimensional materials has allowed physicists to discover
new electronic phases of matter. The increasing interest to
study such systems stems from possible application in the
electronics. With the progress in nanotechnology it has
been possible to produce a variety of low-dimensional
systems such as quantum-wells /QW/, superlattices,
quantum wires, quantum dots or fractals. The common
feature of all these systems is the constrained motion of
the electrons as the result of restricted dimensionality.
These constraints induce complicated correlations in the
motion of the electrons, and hence (although inter-electron
interactions are rather weak) we can classify them as
’Strongly Correlated Electron Systems’.

Provided that heterocomponents of low-dimensional
systems show nanoscale modulations, there arises another
common feature, at ambient temperatures the mean
thermal wavelength becomes comparable to the system
size. As a result of the strong localization between
interfaces/boundaries there arises confinement of mobile
charge carriers, that can alter physical behavior of the
initially free electron gas [1]. Therefore it is important to
have thorough understanding of the different aspects of
confinement in order to be able to design optimized
spintronic devices. In this context it is important to find
some universal relations between confined geometry of the
many body system and the physical phenomena.

The idea of universality stimulates studies of physical
behavior in real structures by means of model systems.
Within this approach only a few parameters are sufficient
to determine the relevant statistical properties of a wide
class of systems. Among the most relevant parameters that
characterize both single particle and collective behavior of
any physical system is the dimensionality. We will show
below that thermodynamical behaviour of a low-
dimensional system is determined by its spectral (fracton)

dimension. If we limit our considerations to the many
body system of weakly interacting particles, then its
spectral dimension is determined by low-energy
excitations. That’s why knowledge of both filled and
empty eigenstates in close vicinity of the Fermi level
becomes crucial for the proper description of the system.

The density of quantum-states in confined many body
system is determined by the shape and height of the QW
potential barriers. This fact causes that value the effective
spectral dimension can differ from the topological
(geometrical) dimension that characterizes particle (mass)
distribution. In real systems the value of effective spectral
dimension extracted from experimental data [2] often
shows fractional values. Experiments confirm that
fractional dimensionality /FD/ can arise in various laminar
system involving different quasiparticles like: polarons,
excitons, magnons, phonons and electrons (see [3]-[13]
and references therein). The spectral fractality of physical
system can be generated two-ways, it can arise due to the
fractality of underlying medium (heriditiary fractality due
geometrical structure) or due to the fractality of the
physical process. The latter mechanism can arise in the
vicinity of phase transition when accumulated fluctuations
of the order parameter form fractal patterns. In quantum
systems under some conditions, e.g. at the critical energy
separating localized and extended states, the wave
functions are shown to have fractal structure (see [14] and
references therein). In the following we will use
approximate analytical methods [15], [16] to discuss
thermodynamical behaviour of confined many body
system. Basing on examples of analytically solvable
systems we show that the effective spectral dimension o of
low-dimensional systems (i.e., of geometrical dimension
D<3) can vary in the range 1<a<4.
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2. Fractional spectral dimension

To any physical systems various definitions of
dimension can be proposed. In description of collective
behavior of many particle system we shall be interested in
geometrical dimension, i.e., dimension of the Euclidean
space embedding a particle and/or spectral (dynamical)
dimension, which is related to the motion of particles
within a solid. The spectral dimension « is defined via the
density of the free electron/quasiparticle states [15]

n(E)E~E-E ¥ dEck® ok, (1)

where the spectral dimension o can take any real (i.e. also
fractional) value. In conventional system the spectral
dimension is nothing but the dimension of the reciprocal
lattice. One can easily check that Eq. (1) reproduces the
well-known formulas for the free electron density in 1D,
2D or 3D systems.

In the case of non translation-invariant structures it
can been proven that spectral dimension is the best
generalization of the Euclidean dimension of the system
when dealing with dynamical or thermodynamical
properties [17]. To show that, let us consider how the
dimensionality enters the thermodynamical quantities. For
an ideal Fermi/Bose gas the grand potential reads

InE=t ¥ In(1+e Pk), @
keaD
where the superscript K labels different dynamical states of
electrons confined within QW. If we replace the
summation over quantum states by the integral the formula
(2) can be written as

In== [ n(e)in(1e PE)de, 3)

0

From Eq. (3) one can easily see that all the
information about the dimensionality of the actual system
enters thermodynamical formulas via the density of states
n(e). Thus, in view of Eq (1) the thermodynamical
evolution of any system depends on its spectral dimension.
There is a widespread conjecture that dimensions of the
position space (lattice), and of dynamical space (reciprocal
lattice) should be both equal and integer. However, there is
experimental evidence that in many laminar systems at
least one of the abovementioned relations does not hold. In
many low-dimensional systems like e.g. superlattices or
overlayers, the vibrational as well the electron density of
states, extracted from the experimental data correlates with
those predicted for the systems of fractional dimension
/FD/ [15, 16, 2]. Values of the effective spectral dimension
o can be either higher (e.g. 0.86<0=4.7 in the irradiated
GaN structures [18]) or lower (even negative [19]).
Moreover in some laminar systems like Ag/Cu(001)
overlayer or GaAs/AlXGal_xAs quantum wells and

superlattices as the layer thickness decreases (see [15] and
references  therein), show (sometime continuous)

dimensional crossover from 3D to almost 2D behavior
[16]. This effect can be easily understood, in any laminar
structure the interlayer tunneling responsible for the
charge transfer along the growth direction "z" is the result
of thermal fluctuations and has 3D character [4] if

2
kBT>tZ (T)/th. 4
In Eq. (4) the t, and th are the interlayer and in-layer
hopping rates respectively, while kB is the Bolzmann

constant. When the temperature is lowered to
2
kBthZ (T)/ txy 5)

the interlayer transfer is gradually limited and we have
temperature driven dimensional 3D — 2D crossover.
Thus, laminar systems offer good testing ground to study
the general relations between dimension of a system and
physical phenomena.

It is evident from the above, that FD originates from
restrained motion of mobile particles or quasi-particles in
the stratified media. As it has been shown (see [15] and
references therein) , the observed FD of a given physical
system is based on physical strength rather than on the
geometrical effects. This can be easily understood,
numerous physical problems involve basic objects, which
are usually described by shrinking or stretching the shape
of some characteristic functions. This fact modifies the
energy spectrum of the mobile quasi-particles, which in
turn determines the spectral dimension [15]. Invoking a
FD space in description of such a systems offers a
convenient alternative to computational techniques. In this
case single parameter - the spectral dimensionality-
contains all of the information about the perturbation. We
adopt the approach by He [15], who has shown that the
anisotropic interactions in 3D space become isotropic ones
in lower FD space, where the dimension is the Haussdorff
dimension and is determined by the degree of anisotropy.
This method allows also application of the k-space
formalism. The method by He [15] postulates that the
electron quantum states are homogenously distributed in
the aD k-space and a surface of constant energy is an a.D
spherical shell. Suppose further that the energy dispersion

is parabolic E—Eozk2 we obtain the expression for the

density of states in oD K-space in the form of Eq. (1) (for
details see [15]). This means although the ionic (mass)
distribution within a position space of dimensionality 3
shows no peculiarities, the density of free particle
eigenstates shows (sometimes fractional) power law
scaling (with effective spectral dimension a=f) [15].

It can be easily proven that definition (1) of the
spectral dimension are nothing but the Hausdorff
dimension of the effective k-space. Assuming that
dynamical space fulfills the connectivity axiom [5], the
Hausdorff dimension is equal to that obtained via box-
counting procedure. Thus, calculation of the Haussdorff
dimension of the dynamical space requires determination
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of the volume VEocEY embedded by a surface of constant

energy. It is well-known fact that density of the density of
states N(E) is proportional to the measure of the surface of
constant energy SE (i.e., n(E)ocSE). Moreover volume

dVEOCEY_ldE of k-space contained between surfaces SE
and SE +dE fulfills relation dVEocSEdE, thus we can write

0V gorSdEoen(E)IEac(E-E )%~ dEck® dk (6)

This means that a=y and to determine the value of the
spectral dimension it suffices to find the exponent that
scales the density of states as an function of energy. The
latter procedure can be performed provided that energy
spectrum is known. This procedure has an advantage over
other analytical procedures since scaling exponents in
density of states (i.e. spectral dimension) can be also
extracted form experimental data [2] . Let us now consider
some model systems for which the value of the effective
spectral dimension can be derived in an analytical way.

3. Model systems

The effective spectral dimensionality of laminar
system can be easily determined provided that energy
spectrum of mobile particles within the layer is known. As
an example let us consider a semiconductor with planar
doping, often used for forming V-shaped potential wells
with quasi 2D electron gas.

3.1 V-shaped 8-doped semiconductor

When the deposition of impurities can be represented
by the Dirac &-function, it is called & doping [13]. The
enhanced mobility of the 2D electron gas in V-shaped, -
doped semiconductor multilayers can be described by the
following Hamiltonian [13]

H=—a V4—(x 2

Vo, v, %)
where
2
w ( | 1) o ©
o 1, OUn= ,
14 M, 2,

*
while My and m denote the bare and effective electron

mass respectively, while Eg is the bottom of the valence

band (for detailed description of the model see [13] and
references therein). V=V(z) is the confinement potential
that includes electron-electron interaction. At the same
time V(z) is the conduction band edge profile. The
eigenenergies of the electron/holes are given by [12]

sk=a2k2—a1k4—u, )

where p is the Fermi energy, IZ:(kX,ky). The g represents

the two-dimensional band of the 2D electron gas within
the quantum wells of a laminar system. Having the mobile
quasi-particle spectrum (9) known we can calculate the
density of states as follows [13]

n(k)dken(e—s,) " 2de. (10)

Expression (10) can be fitted to the general formula
(1) by setting a=1. This means that we can model such a
planar semiconductor with non-parabolic dispersion (3) by
a 1D system with parabolic dispersion. In principle it is
enough if the density of states fulfills relation (1) in a
small energy window close to the Fermi energy. Extensive
analytical discussion of how the effective spectral
dimensionality is associated with the number of the free
electron modes can be found in [3].

3.2 Parabolic quantum well

Modern manipulation opportunities allow fabrication
of semiconductor structures with highly controlled
variable chemical composition and thickness of layers.
Non-square quantum wells involving substantially non-
homogenous parts due to deliberate design, rather than
having the conventional rectangular profiles, have been
studied both experimentally and theoretically in the past
few years and found to exhibit attractive performances
(see [12] and references therein). The most promising
appear the parabolic quantum well /PQW/ systems, which
have the ability to absorb light only at the bare harmonic-
oscillator frequency irrespective of the electron-electron
interaction or the number of electrons in the well.
Assuming that the "z" denotes the direction of the planar
PQW , the Hamiltonian which describes the electronic
structure within the envelope function formalism and
effective mass approximation, reads [12]

2
__h 2 D2
He— SV T2°4E ) - (11)

Here, EO and m,, represent the band gap energy, and the

effective mass at the center of the PQW, respectively. D is
the curvature of the parabolic potential profile, which is
assumed to be infinitely high. In view of the Hamiltonian
(11) the electronic states within the PQW are the standard
harmonic oscillator states and consequently the electron
spectrum is given by [12]

2,2 1
&= W—khm(n-% 5)—;1 s (12)

where p is the Fermi energy, p=(X,y) and IZ:(kX,ky). The

n
g Trepresents the two-dimensional band of the quasi-2D
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electron gas within the planar PQW. As we can see from

Eq. (3) the finite thickness and broken translational

symmetry of PQW structure leads to different quantization

in the growth direction of the allowed electronic states.

Assuming that all conduction electron states below the
n

Fermi level 8F=8kF are occupied for both spin states, they

fill a (rotational) paraboloide in the (kx,ky,n) space. The

electronic density of states, taking into account the spin
degeneracy, is given by [15]

n(E) dE= 2%.(E—EO) dE. (13)
h

Expression (6) can be fitted to the general formula (1)
by setting o =4. Conclusion, that the K-space of the
electron gas confined within the PQW is four-dimensional
appears to be counter-intuitive, however as we will show
below there are other systems for which the spectral
dimension exceeds 4.

3.3 HTC copper oxides

The conjecture that superconductivity comes about
because of the fractal structure of underlying medium was
raised firstly by Buettner and Blumen [7] in discussion of
the high-temperature superconductivity (HTC). In the
HTC copper oxides the onset of superconductivity is
closely related to the oxygen deficiency. It was postulated
that the oxygen vacancies located mainly within the CuO2
planes of the YBCO system form a fractal structures.
Since the fraction vibrational frequency cutoff wFD is
much greater than the Debye frequency of crystalline
systems there arose conjecture that conduction electron
scattering off fractons can be responsible for the high
critical temperature [11]. Suppose that HTC SC is in the
normal phase, then the energy spectrum of the mobile,
bipolaron local electron pairs /LEP’s/ is given by 8k=y\k\

[20] where Ee(kx,ky) space. Thus the density of the LEP’s

pairs is given by n(k)dkeckdk or equivalently
n(E)dEoc\E—EO\dE. The latter formula means that the

effective spectral dimension of the LEP’s system equals 4.
Although all the discussed model systems are the quasi-2D
(when geometrical meaning of dimensionality is used)
their spectral dimension varies within 1<aD<4 range.
Since collective behavior of the many body system is
determined by density of states this means that these
quasi-2D systems should behave in different manner.
Below we will discuss some consequences of the variable
spectral dimensionality of layered systems.

4. Condensation of the local electron pairs in
the HTC superconductors

The conventional theory of boson condensation
derived for systems of integral dimensionality [8] can be

easily extended onto systems, which exhibit fractional
spectral dimension a. The total number of bosons NB(T)

in the system consists of the NB 0(T) ones that occupy
the ground state 80,(80:0 in the thermodynamic limit),
while the others are distributed over higher energy levels.

In view of this we have: [8]

1
Ng=Ng oM+ 2 By =

(14

where =1/ KBT and uB<0 is the chemical potential. In Eq.

(14) we assume that summation goes over the K -states
filling the fractional aD space. After some algebra we can
find the condensate fraction NB O(T)/ NB 0(O) as [4].

Np o(T) V N
B,0 o m

—_—_—= /2). 15
NB,O(O) NB(anhzj He2) ()

The condensate fraction falls off when the
temperature is increased and eventually at Tc the
condensate vanishes i.e. NB,O(T)/NB,O(O)ZO . From this

condition we can derive the formula for the critical
temperature TC as a function of the effective spectral

dimension o.

- Voc 2/a
T = e g(q/z)j . (16)
¢, anth (NB

The fact that the phase transitions are governed by the
value of spectral rather than spatial dimension has been
established long time ago when studying fractal systems
[9], [10]. However, in the case of bulk or laminar systems
phase transitions still are improperly classified according
to the value of their spatial (geometrical) dimension.

Let us discuss some consequences of Eq. (16). In
conventional theories the ratio V(x/NB is treated as the

inverse boson pair concentration ng - Such interpretation

is justified provided that spectral dimension o and
dimension of real space [ (position space) are equal.
However, in systems of FD such interpretation is not valid.
Suppose, that in the system under consideration we have
some characteristic length L, then the volume

VazLaz(kF)_a. Simultaneously the volume of the
system, i.e. volume filled with quasi-particles (boson
pairs) can be expressed as VBzLB . In view of this,
concentration ng being the real space quantity reads as
nB:NBNB' Distinction between this different notions of

dimensionality is often missed, but as it will be shown
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below crucial in proper description of dimensional effects

in SC. Inserting relation VazLa into Eq. (15) we have:

* 2 2/&
m L L(a/2)
Co 2| N a7
> 2Tcth B

In many layered systems when external conditions
(temperature, thickness or fields) change the FD system
undergoes (sometimes continuous) dimensional crossover.
Let us consider a FD system in two states, which exhibit
spectral FD a and o' respectively. Moreover let us assume
that number of preexisting boson pairs is constant during
this dimensional crossover. In view of Eq. (17) the
hypothetical critical temperatures in both states fulfill the
relation.

*

Teo Mo c@2)®?  2la—2/0)
T« a2 NB - a8y
coa m  G(a2)

o

Let us study the variation of the critical temperature

T associated with the continuous dimensional

c,a' ’
crossover. We assume, that in Eq. (18) a=3, i.e. we take
the 3D case as the reference system. From Eq. (18) results
that the critical temperature is elevated when the spectral
dimensionality increases. The ratio (18) can be by an order
of 10 or even larger when the spectral dimension o'
exceeds 3. This means that in this situation the
condensation occurs just at the pair formation temperature.

5. Layered magnetic systems

Another collective magnetic phenomenon governed
by the low-energy excitations is the RKKY exchange
interactions. Let us assume that some localized magnetic
moments are immersed in a sea of electrons which exhibit
fractional spectral dimensionality o. As the result of
electron, spin dependent scattering there arises an
oscillatory polarization of the free electron system being a
source of the RKKY interaction.

5.1 RKKY interaction in a system of fractional
dimension

Within perturbative approach, the RKKY interaction
between magnetic moments of the magnetic ions (ui and

”j )located at a distance Ri j can be written as [3]

1 -
HR;p=2A" 1Ry i i (19)

where X(ri j) is the non-uniform static susceptibility and A
is a constant. The explicit form of the x(Ri J-) is given by
(3]

XYRI=T X Gl R)%, (20)
|

where w|=nT(2|+1) are the Matsubara frequencies and the

electronic Green’s function is

3 3 (KR
G(io.R)»= [ d*k@m™ e

@n
As we can see the calculation of the RKKY exchange
integrals reduces to integration over oD free electron
eigenstates with density of states given by Eq. (7).

Contour integration over ® in eq. (20), accounting for the
discontinuity of G(i®,R) at =0, in the low temperature
limit, leads to an expression for the RKKY exchange
integral in an oD system (compare [3])

X
w01 [Por2-109 Y2100 000 Y5 (0]422)
r

with YV(X) being the Neumann function, X:kF rand o=1 is

the effective spectral dimension of the system under
consideration.

The calculated static susceptibility that determines
exchange integral J(r):Jo-x(r) of the RKKY interaction

(22) in the PQW system, shows conventional, sign-
reversal oscillatory behavior with the period governed by
the wave-vector 2kF. It is well known fact that the leading

term of the RKKY exchange integrals decays with the

interspin separation as r_D ( see [3] and references
therein), where D is the dimension of the system. The
result (22) indicates clearly, that the spatial variation of the
envelope function of x(r) is governed by the spectral
dimension a. The relation a<p is the direct consequence
of dispersion (3), which generates lower density of states
n(e) compared to that of conventional parabolic dispersion.
The fact that in the case of our system o<} means that the
RKKY exchange integrals fall off (with the interspin
separation) in a different manner that one would expect for
the quasi-2D systems. We should note here that one would
expect that the formulae for the RKKY range function (22)
refers also to the Friedel oscillations in low-dimensional
systems.

5.2 Thermodynamical behavior

The contribution from magnonic excitations in
laminar system (that can be described by fractional
dimension) to the internal energy of the system that is
given by [21]
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& g2 a/2+1
U:f de(a):f Wd(s)sz . (23)
0 B 0 B

where 528—80. Result (23) predicts arbitrary fractional
power law temperature dependence of the specific heat
C mocTa/ 2, while in case of bulk systems it should be
CmocT3/2
Ilkovi¢ and Tuleja [22] predict similar behavior of Cm in

. It is worth to note that numerical simulations by

layered system with dimensionality o that varies, as the
function of the QW thickness, within 2.2<0<3.0 range.
Similarly, the Bloch exponent in the low temperature
magnetization M(T) can be calculated giving us

M(T)=M(0)(1-BT2).

6. Fractal systems

Last years the fractal systems attracted much
attention. The fractality of physical systems manifests
itself many ways, it can arise from the geometrical
structure of nanocomposites [23] or diffusion limited
aggregates (hereditary fractality), domain patterns [24] or
fractality of relaxation processes [25]. The essential
property of fractal systems (and consequently of physical
processes on them) is a hierarchical organization of its
elements, described by discrete scaling laws, which makes
the fractal, regardless of magnification or contraction
scale, looks the same. This property of fractals is called
self-similarity, self-affinity or self-replicability. The fractal
structure characterizes the static properties of the system
while the thermodynamical description the information
about spectral dimension is necessary. Therefore we
should recall dynamical properties and interactions on
fractal systems. The fractality influences the dynamical
behavior two-ways. The first dependence comes from
fractal distribution of interacting species in the embedding
Euclidean space (mass fractal), while the second stems
from the boundary conditions set on fractal perimeters
(fractal drums). Consequently, evolution of fractal systems
a rule involves fractional dynamics of the system [26],
which in turn involves fractional calculus as the main tool
of the theoretical description. The elementary excitations
are the solutions of fractional differential equation e.g. of
the wave-like form [26], [27], [28].

B L p%u—
D" g {D%u=0 (24)

In Eq. (24 DB u and D% denote the operators of
& t

fractional order differentiation with respect to the space
and time variables (the Remann-Louville, Riesz, Caputo
etc. derivatives, depending on the type of physical process,
for details see [29])) with respect to space or time
variables. The fractional time derivative accounts for the

random interactions with the surrounding, while fractional
space derivatives describe the reduced dimensionality of
the system. We should remind the reader here that
parameters o and [ model different features of the
dynamical system. The order of fractional time derivative
a describes the damping, while the value of B reflects the
reduced dimensionality of the fractal set. The direct
consequence of the unconventional dynamics of the
system is that the value of the spectral dimension as the
rule is a fraction.

7. Summary

We study the many body system, in which the mobile
charge carriers are confined within quantum-wells. Since
thermodynamical behavior of such systems is determined
by the low-energy excitations of single quasiparticles to
account the effects of quantum confinement it suffices to
know the density, of states close to the Fermi level. In our
study we limit ourselves to the case, when the density of
single quasiparticle states is given by Eq. (1). The
effective density of states shows simple scaling relation
with an exponent (spectral dimension) o.. We show that
the effective spectral dimension of quasi-2D system can be
a fraction from the 1<o<4 region, and can vary when
external parameters like temperature or pressure are
changed. When applied to real systems like magnetic
superlattices or HTC copper oxides the -effective
dimensionality approach allows rigorous calculation of
analytical expressions for some physical quantities.
Among others we have derived formulae for the interlayer
coupling in magnetic superlattice and critical temperature
in LEP based superconductor as an analytical functions of
spectral dimension.

In conclusion we can state that presented approach
offers convenient alternative to the numerical simulations
and gives better insight into the physics of the low-
dimesional systems. From the discussion above it is
evident that topological (geometrical) dimension
characterizes static properties of a physical system while
the spectral dimension describes its dynamical evolution.
The fact that effective spectral dimension depends on the
external fields indicates the way in which physical
properties of quasi-2D systems can be manipulated form
outside. It is evident that potential applications of the
results obtained cover much wider variety of many body
systems than those discussed above.
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